逻辑回归算法——处理简单数据

代码实现

(1)数据处理;   (2)sigmoid函数;  (3)梯度上升算法;  (4)改进的随机梯度上升算法;  (5)绘图

# -*- coding:UTF-8 -*-
import matplotlib.pyplot as plt
import numpy as np
import random

"""
函数说明:加载数据
Parameters:
    无
Returns:
    dataMat - 数据列表
    labelMat - 标签列表
"""
def loadDataSet():
    dataMat = []  # 创建数据列表
    labelMat = []  # 创建标签列表
    fr = open('testSet.txt')  # 打开文件
    for line in fr.readlines():  # 逐行读取
        lineArr = line.strip().split()  # 去回车,放入列表
        dataMat.append([1.0, float(lineArr[0]), float(lineArr[1])])  # 添加数据
        labelMat.append(int(lineArr[2]))  # 添加标签
    fr.close()  # 关闭文件
    return dataMat, labelMat  # 返回


"""
函数说明:sigmoid函数
Parameters:
    inX - 数据
Returns:
    sigmoid函数
"""
def sigmoid(inX):
    return 1.0 / (1 + np.exp(-inX))


"""
函数说明:梯度上升算法 
Parameters:
    dataMatIn - 数据集
    classLabels - 数据标签
Returns:
    weights.getA() - 求得的权重数组(最优参数)

def gradAscent(dataMatIn, classLabels):
    dataMatrix = np.mat(dataMatIn)                            #转换成numpy的mat
    labelMat = np.mat(classLabels).transpose()                #转换成numpy的mat,并进行转置
    m, n = np.shape(dataMatrix)                               #返回dataMatrix的大小。m为行数,n为列数。
    alpha = 0.001                                             #移动步长,也就是学习速率,控制更新的幅度。
    maxCycles = 500                                           #最大迭代次数
    weights = np.ones((n,1))
    for k in range(maxCycles):
        h = sigmoid(dataMatrix * weights)                     #梯度上升矢量化公式
        error = labelMat - h
        weights = weights + alpha * dataMatrix.transpose() * error
    return weights.getA()                                     #将矩阵转换为数组,返回权重数组
"""

"""
函数说明:改进的随机梯度上升算法

Parameters:
    dataMatrix - 数据数组
    classLabels - 数据标签
    numIter - 迭代次数
Returns:
    weights - 求得的回归系数数组(最优参数)
"""
def stocGradAscent1(dataMatrix, classLabels, numIter=150):
    m, n = np.shape(dataMatrix)  # 返回dataMatrix的大小。m为行数,n为列数。
    weights = np.ones(n)  # 参数初始化
    for j in range(numIter):
        dataIndex = list(range(m))
        for i in range(m):
            alpha = 4 / (1.0 + j + i) + 0.01  # 降低alpha的大小,每次减小1/(j+i)。
            randIndex = int(random.uniform(0, len(dataIndex)))  # 随机选取样本
            h = sigmoid(sum(dataMatrix[randIndex] * weights))  # 选择随机选取的一个样本,计算h
            error = classLabels[randIndex] - h  # 计算误差
            weights = weights + alpha * error * dataMatrix[randIndex]  # 更新回归系数
            del (dataIndex[randIndex])  # 删除已经使用的样本
    return weights  # 返回


"""
函数说明:绘制数据集
Parameters:
    weights - 权重参数数组
"""
def plotBestFit(weights):
    dataMat, labelMat = loadDataSet()  # 加载数据集
    dataArr = np.array(dataMat)  # 转换成numpy的array数组
    n = np.shape(dataMat)[0]  # 数据个数
    xcord1 = []
    ycord1 = []  # 正样本
    xcord2 = []
    ycord2 = []  # 负样本
    for i in range(n):  # 根据数据集标签进行分类
        if int(labelMat[i]) == 1:
            xcord1.append(dataArr[i, 1])
            ycord1.append(dataArr[i, 2])  # 1为正样本
        else:
            xcord2.append(dataArr[i, 1])
            ycord2.append(dataArr[i, 2])  # 0为负样本
    fig = plt.figure()
    ax = fig.add_subplot(111)  # 添加subplot
    ax.scatter(xcord1, ycord1, s=20, c='red', marker='s', alpha=.5)  # 绘制正样本
    ax.scatter(xcord2, ycord2, s=20, c='green', alpha=.5)  # 绘制负样本
    x = np.arange(-3.0, 3.0, 0.1)
    y = (-weights[0] - weights[1] * x) / weights[2]
    ax.plot(x, y)
    plt.title('BestFit')  # 绘制title
    plt.xlabel('X1')
    plt.ylabel('X2')  # 绘制label
    plt.show()


if __name__ == '__main__':
    dataMat, labelMat = loadDataSet()
    #weights = gradAscent(dataMat, labelMat)
    weights = stocGradAscent1(np.array(dataMat), labelMat)
    plotBestFit(weights)

运行结果

数据集(x1,x2,label)

testSet.txt

-0.017612    14.053064    0
-1.395634    4.662541    1
-0.752157    6.538620    0
-1.322371    7.152853    0
0.423363    11.054677    0
0.406704    7.067335    1
0.667394    12.741452    0
-2.460150    6.866805    1
0.569411    9.548755    0
-0.026632    10.427743    0
0.850433    6.920334    1
1.347183    13.175500    0
1.176813    3.167020    1
-1.781871    9.097953    0
-0.566606    5.749003    1
0.931635    1.589505    1
-0.024205    6.151823    1
-0.036453    2.690988    1
-0.196949    0.444165    1
1.014459    5.754399    1
1.985298    3.230619    1
-1.693453    -0.557540    1
-0.576525    11.778922    0
-0.346811    -1.678730    1
-2.124484    2.672471    1
1.217916    9.597015    0
-0.733928    9.098687    0
-3.642001    -1.618087    1
0.315985    3.523953    1
1.416614    9.619232    0
-0.386323    3.989286    1
0.556921    8.294984    1
1.224863    11.587360    0
-1.347803    -2.406051    1
1.196604    4.951851    1
0.275221    9.543647    0
0.470575    9.332488    0
-1.889567    9.542662    0
-1.527893    12.150579    0
-1.185247    11.309318    0
-0.445678    3.297303    1
1.042222    6.105155    1
-0.618787    10.320986    0
1.152083    0.548467    1
0.828534    2.676045    1
-1.237728    10.549033    0
-0.683565    -2.166125    1
0.229456    5.921938    1
-0.959885    11.555336    0
0.492911    10.993324    0
0.184992    8.721488    0
-0.355715    10.325976    0
-0.397822    8.058397    0
0.824839    13.730343    0
1.507278    5.027866    1
0.099671    6.835839    1
-0.344008    10.717485    0
1.785928    7.718645    1
-0.918801    11.560217    0
-0.364009    4.747300    1
-0.841722    4.119083    1
0.490426    1.960539    1
-0.007194    9.075792    0
0.356107    12.447863    0
0.342578    12.281162    0
-0.810823    -1.466018    1
2.530777    6.476801    1
1.296683    11.607559    0
0.475487    12.040035    0
-0.783277    11.009725    0
0.074798    11.023650    0
-1.337472    0.468339    1
-0.102781    13.763651    0
-0.147324    2.874846    1
0.518389    9.887035    0
1.015399    7.571882    0
-1.658086    -0.027255    1
1.319944    2.171228    1
2.056216    5.019981    1
-0.851633    4.375691    1
-1.510047    6.061992    0
-1.076637    -3.181888    1
1.821096    10.283990    0
3.010150    8.401766    1
-1.099458    1.688274    1
-0.834872    -1.733869    1
-0.846637    3.849075    1
1.400102    12.628781    0
1.752842    5.468166    1
0.078557    0.059736    1
0.089392    -0.715300    1
1.825662    12.693808    0
0.197445    9.744638    0
0.126117    0.922311    1
-0.679797    1.220530    1
0.677983    2.556666    1
0.761349    10.693862    0
-2.168791    0.143632    1
1.388610    9.341997    0
0.317029    14.739025    0

 

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 技术黑板 设计师:CSDN官方博客 返回首页